650V GaN FET in PQFN (source tab)

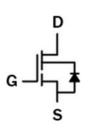
产品说明

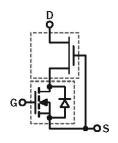
GSR065D013系列 650V、150mΩ 氮化镓 (GaN) FET 为常关型器件。它通过结合最先进的高压 GaNHEMT 与低压硅 MOSFET来提供卓越的安全可靠 性。

通过更低的栅极电荷、更低的交叉损耗和更小的反 向恢复电荷提供比硅更高的效率。

产品特征

- 通过JEDEC认证的氮化镓技术
- 动态导通电阻生产测试
- •安全稳健的设计
 - 固有寿命测试
 - 宽栅安全裕度
 - 瞬态过压能力
- 极低的Q_{RR}
- 减少交叉损耗
- ●符合 RoHS 标准且无卤素封装


订购信息


Part Number	Package	Package Configuration
GSR065D013A	8x8mm PQFN	Source

Part Number	Package	Package Configuration
GSR065D013A	8x8mm PQFN	Source

GSR065D013A **PQFN** (top view)

Cascode 示意图符号

Cascode 器件结构

产品优点

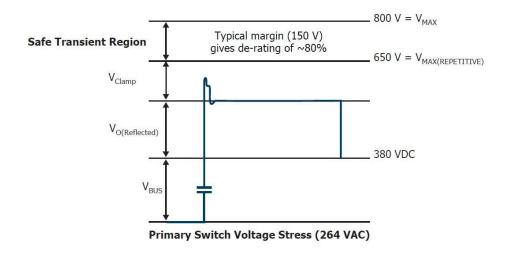
- 提高硬开关和软开关电路的效率
- 提高功率密度
- 减小系统尺寸和重量
- 整体系统成本更低
- 使用常用的栅极驱动器易于驱动
- GSD引脚布局改进

* 产品应用

- 消费电子
- 电源适配器
- 小功率开关电源
- 照明

主要规格			
V _{DS} (V) min	650		
V _{DSS(TR)} (V) max	800		
R _{DS(on)} (mΩ) max*	180		
Q _{RR} (nC) typ	40		
Q _G (nC) typ	8		

^{*}动态电阻;请参见图18和图19

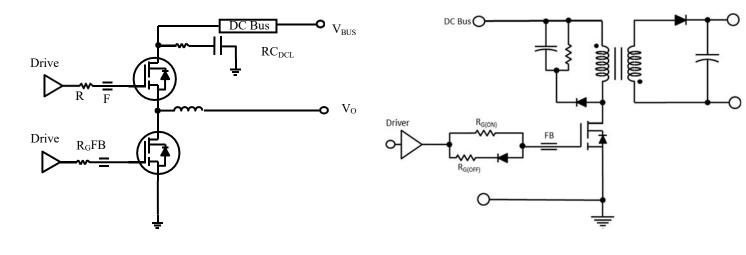

GSR065D013A

绝对最大额定值 (Tc=25°C 除非另有说明)

Symbol	Parameter		Limit Value	Unit
V _{DSS}	Drain to source voltage (T」=	-55°C to 150°C)	650	
V _{DSS(TR)}	Transient drain to source voltage a		800	V
V _{GSS}	Gate to source voltage		±20	
P _D	Maximum power dissipation	@T _C =25°C	52	W
I _D	Continuous drain current @Tc=25°C b		13	A
ID	Continuous drain current @Tc=100°C b		8.4	A
I _{DM}	Pulsed drain current (pulse v	Pulsed drain current (pulse width: 10µs)		A
Tc	Operating temperature	Case	-55 to +150	°C
TJ	Operating temperature	Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
Tsold	Reflow soldering temperature °		260	°C

Notes:

- 在关断状态下,峰值占空比D < 0.01,峰值持续时间为30m秒,不重复为了提高高电流操作下的稳定性,请参见第3页上的电路实现
- b.
- 回流焊 MSL3



热阻

Symbol	Parameter	Typical	Unit
Rejc	Junction-to-case	2.4	°C/W
Roja	Junction-to-ambient d	50	°C/W

d. 用于漏极连接的一层环氧树脂 PCB 上的器件 (垂直且无气流冷却,铜面积为 6cm²,厚度为 70μm)

电路实现

简化的半桥示意图

简化的单端原理图

推荐的栅极驱动: (0V,10V), R_{G(tot)}=70Ω^a

推荐的栅极驱动: (0V, 12V), R_{G(ON)} = 100 -300 Ω

 $R_{G(OFF)} = 0 - 15 \Omega$

Gate Ferrite Bead (FB)	Required DC Link RC Snubber (RC _{DCL}) b
240Ω @ 100MHz	4.7nF + 2.5Ω

Notes:

仅用于桥式拓扑,RG在单端拓扑中要小得多RCock应尽可能靠近漏极引脚

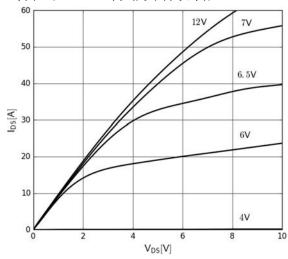
GSR065D013A

电气参数 (T」=25°C 除非另有说明)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward D	Device Characteristics		ı	ı			
V _{DSS(BL)}	Maximum drain-source voltage	650	_	_	V	V _{GS} =0V	
V _{GS(th)}	Gate threshold voltage	3.3	4	4.8	V	$V_{DS}=V_{GS}$, $I_{D}=0.5$ mA	
$\Delta V_{GS(th)}/T_J$	Gate threshold voltage temperature coefficient	_	-5.8	_	mV/°C		
RDS(on)eff	Drain-source on-resistance ^a	_	150	180	mΩ	V _{GS} =10V, I _D =8.5A, T _J =25°C	
NDS(on)eπ	Dialii-Source off-resistance	_	307	_	11152	V _{GS} =10V, I _D =8.5A, T _J =150°C	
Ipss	Drain-to-source leakage current	_	2.5	25	μA	V _{DS} =650V, V _{GS} =0V, T _J =25°C	
IDSS	Drain-to-source leakage current	_	10	_	μΛ	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	_	100	ъ Л	V _{GS} =20V	
Igss	Gate-to-source reverse leakage current	_	_	-100	nA	V _{GS} =-20V	
Ciss	Input capacitance	_	598	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	30	_	pF		
Crss	Reverse transfer capacitance	_	1	_			
C _{O(er)}	Output capacitance, energy related ^b	_	43	_	pF	V _{GS} =0V, V _{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related ^c	_	85	_	рг		
Q _G	Total gate charge	_	8	_		V _{DS} =400V, V _{GS} =0V to 10V, I _D =8.5A	
Q _G s	Gate-source charge	_	3.3	_	nC		
Q _{GD}	Gate-drain charge	_	2	_			
Qoss	Output charge	_	34	_	nC	V _{GS} =0V, V _{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	37.8	_		V_{DS} =400V, V_{GS} =0V to 12V, I_{D} =10A, R_{G} =70 Ω , Z_{FB} =240 Ω at 100MHz (See Figure 14)	
t _R	Rise time	_	5.2	_	ns		
$t_{D(off)}$	Turn-off delay		48	_	113		
t _F	Fall time	_	8	_			

Notes:

a. 动态导通电阻;有关测试电路和条件,条件见图18和图19


b. 当VDS从0V上升到400V时,提供相同存储能量的等效电容 c. 当VDS从0V上升到400V时,提供相同充电时间的等效电容

GSR065D013A

电气参数(T」=25°C 除非另有说明)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Device Characteristics							
ls	Reverse current	_	_	8.3	А	V _{GS} =0V, T _C =100°C, ≤20% duty cycle	
V	Poverse veltage a	_	2.4	_	V	V _{GS} =0V, I _S =10A	
V _{SD}	Reverse voltage ^a	_	1.6	_		V _{GS} =0V, I _S =5A	
t _{RR}	Reverse recovery time	_	31	_	ns	I _S =10A, V _{DD} =400V, di/dt=1000A/ms	
Q _{RR}	Reverse recovery charge	_	40	_	nC		

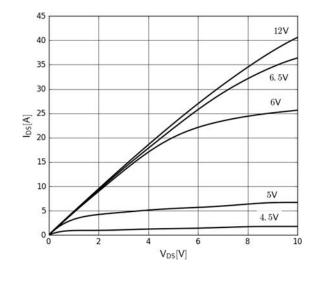
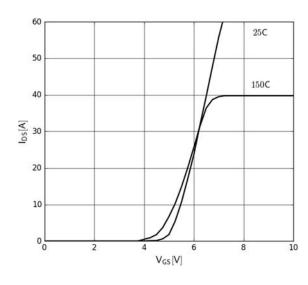
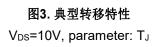




图1.典型输出特性T」=25℃ Parameter: V_{GS}

图2. 典型输出特性 TJ=150°C Parameter: V_{GS}

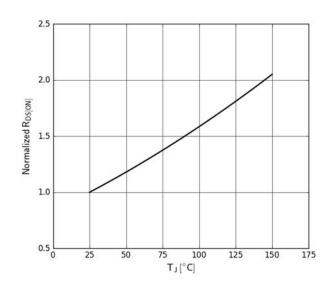


图 **4.** 归一化导通电阻 I_D=16A, V_{GS}=10V

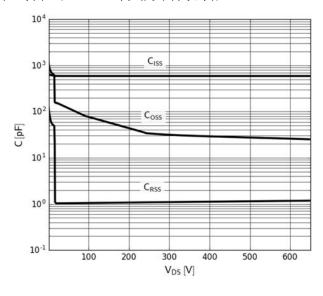


图 **5.** 典型电容 V_{GS}=0V, f=1MHz

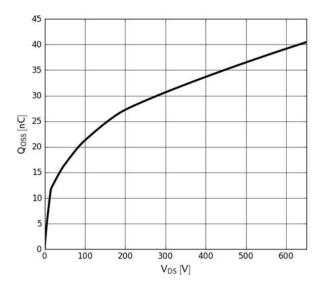


图7. 典型Qoss

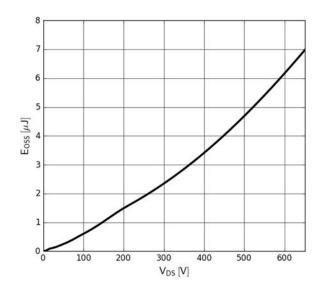


图 6. 典型Coss储能

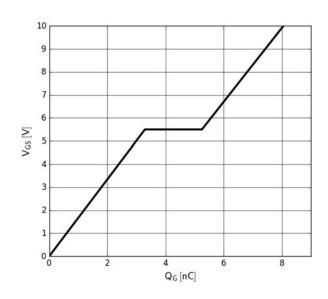


图 8. 典型栅极电荷 I_{DS}=10A, V_{DS}=400V

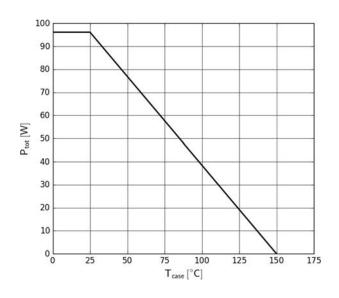


图9. 功耗

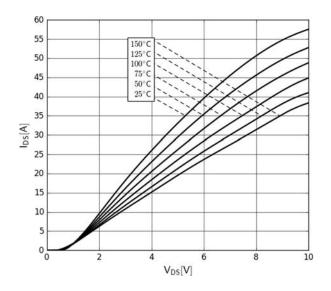


图11. 二极管正向特性 Is=f(V_{SD}), parameter: T_J

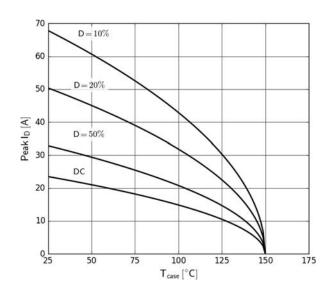


图10. 电流降额 Pulse width ≤ 10µs, VGS ≥ 10V

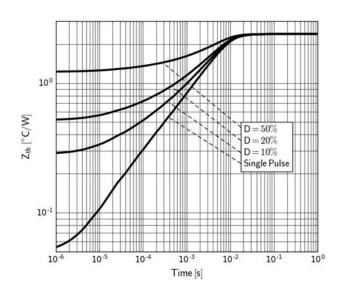


图12. 瞬间热阻

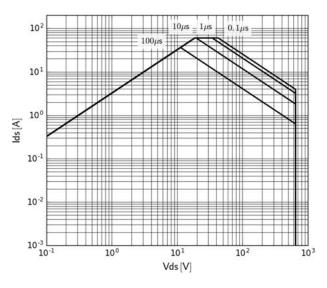


图 13. 安全工作区 Tc=25°C

测试电路与波形

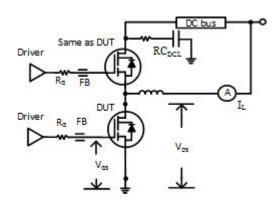


图14. 开关时间测试电路

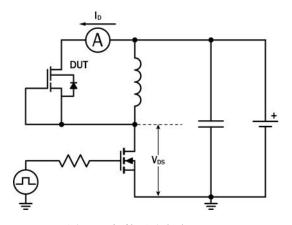


图16. 二极管测试电路

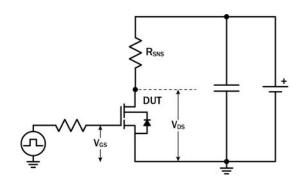


图18. 动态 RDS(on)eff 测试电路

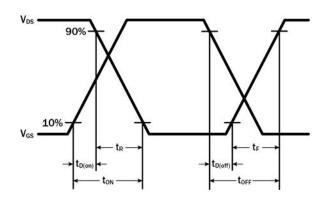


图 15. 开关时间与波形

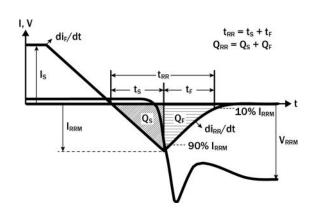


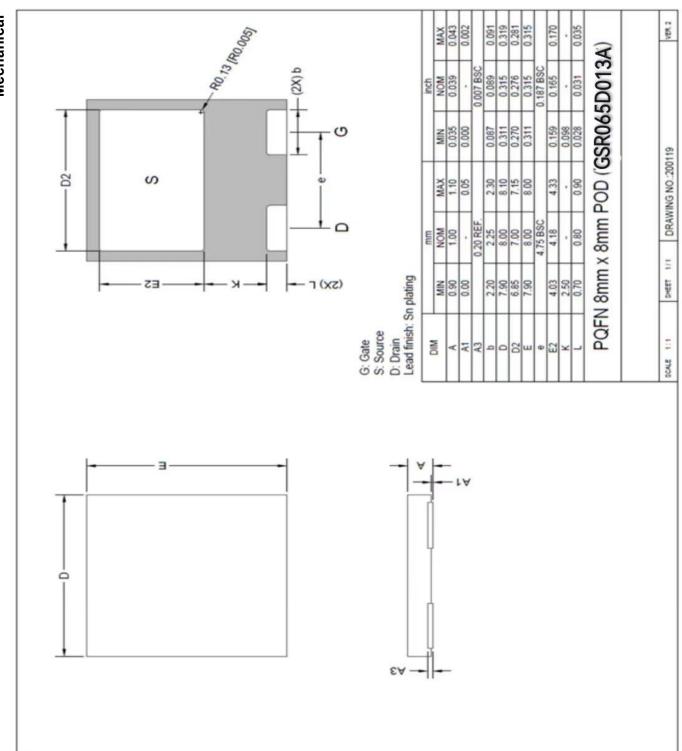
图17. 二极管恢复波形



图19. 动态 RDS(on)eff 波形

GSR065D013A

设计注意事项


GaN器件的快速开关降低了电流-电压交叉损耗,可实现高频率操作,同时具有高效率。要充分利用GaN的快速开关特性,就需要遵守特定的PCB布局指南和探测技术。

下表提供了在评估过程中需遵循的实际规则

评估GSR半导体GaN器件

DO	DO NOT
通过驱动和电源环路中保持走线短,最大限度降低电路电感	扭转TO-220或TO-247的引脚,以适应GDS电路板布局
安装到PCB上时,将TO-220和TO-247封装引线长度降至最低	在驱动电路中使用长走线, 器件的引线长度过长
使用最短检测环路进行探测;将探头及其接地连接直接连接至测试点	使用差模探头或带长线的探头接地夹

